The following published clinical studies and scientific papers have shown features and benefits of the CARMEDA® BioActive Surface:
1) Olsson P, Sanchez J, Mollnes TE, et al. On the blood compatibility of end-point immobilized heparin.
J Biomater Sci Polym Ed 2000, 11(11): 1261-1273
2) Weber N, Wendel HP, Ziemer G, et al. Hemocompatibility of heparin-coated surfaces and the role of selective plasma protein adsorption.
Biomaterials 2002, 23(2): 429-439
3) Pasche B, Kodama K, Larm O, et al. Thrombin inactivation on surfaces with covalently bonded heparin.
Thromb Res 1986, 44(6): 739-748
4) Kodama K, Pasche B, Olsson P, et al. Antithrombin III binding to surface immobilized heparin and its relation to FXa inhibition.
Thromb Haemost 1987, 58(4): 1064-1067
5) Sanchez J, Elgue G, Riesenfeld J, et al. Control of contact activation on end-point immobilized heparin: the role of antithrombin and the specific antithrombin-binding sequence.
J Biomed Mater Res 1995, 29(5): 655-661
6) Sanchez J, Elgue G, Riesenfeld J, et al. Studies of adsorption, activation, and inhibition of factor XII on immobilized heparin.
7) Begovac PC, Thomson RC, Fisher JL, et al. Improvements in GORE-TEX® Vascular Graft performance by Carmeda® BioActive Surface heparin immobilization.
Eur J of Vasc Endovasc Surg 2003 25(5): 432-437.
8) Freeman J, Chen A, Weinberg RJ, et al. Sustained thromboresistant bioactivity with reduced intimal hyperplasia of heparin-bonded PTFE Propaten Graft in a chronic canine femoral artery bypass model.
Ann Vasc Surg 2018, 49: 295-303
9) Mottaghy K, Oedekoven B, Pöppel K, et al. Heparin-coated versus non-coated surfaces for extracorporeal circulation.
Int J Artif Organs 1991, 14(11): 721-728
10) Øvrum E, Tangen G, Tølløfsrud S, et al. Heparinized cardiopulmonary bypass circuits and low systemic anticoagulation: An analysis of nearly 6000 patients undergoing coronary artery bypass grafting.
J Thorac Cardiovasc Surg 2011, 141(5): 1145-1149
11) Mollnes TE, Videm V, Christiansen D, et al. Platelet compatibility of an artificial surface modified with functionally active heparin.
Thromb Haemost 1999, 82(3): 1132-1136
12) Kocsis JF, Llanos G, Holmer E. Heparin-coated stents.
J Long Term Eff Med Implants 2000, 10(1-2): 19-45
13) Lin PH, Bush RL, Yao Q, et al. Evaluation of platelet deposition and neointimal hyperplasia of heparin-coated small-caliber ePTFE grafts in a canine femoral artery bypass model.
J Surg Res 2004, 118(1): 45-52
14) Fukutomi M, Kobayashi S, Niwaya K, et al. Changes in platelet, granulocyte, and complement activation during cardiopulmonary bypass using heparin-coated equipment.
Artif Organs 1996, 20(7): 767-776
15) Gurbel PA, Bliden KP. Platelet activation after stenting with heparin-coated versus noncoated stents.
16) Mollnes TE, Riesenfeld J, Garred P, et al. A new model for evaluation of biocompatibility: combined determination of neoepitopes in blood and on artificial surfaces demonstrates reduced complement activation by immobilization of heparin.
Artif Organs 1995, 19(9): 909-917
17) Kopp R, Mottaghy K, Kirschfink M. Mechanism of complement activation during extracorporeal blood-biomaterial interaction: effects of heparin coated and uncoated surfaces.
18) Lappegård KT, Fung M, Bergseth G, et al. Effect of complement inhibition and heparin coating on artificial surface-induced leukocyte and platelet activation.
Ann Thorac Surg 2004, 77(3): 932-941
19) Lappegård KT, Bergseth G, Riesenfeld J, et al. The artificial surface-induced whole blood inflammatory reaction revealed by increases in a series of chemokines and growth factors is largely complement dependent.
J Biomed Mater Res A 2008, 87(1): 129-135
20) Fosse E, Moen O, Johnson E, et al. Reduced complement and granulocyte activation with heparin-coated cardiopulmonary bypass.
Ann Thorac Surg 1994, 58(2): 472-477
21) Appelgren P, Ransjö U, Bindslev L, et al. Surface heparinization of central venous catheters reduces microbial colonization in vitro and in vivo: results from a prospective, randomized trial.
Crit Care Med 1996, 24(9): 1482-1489
22) Jain G, Allon M, Saddekni S, et al. Does heparin coating improve patency or reduce infection of tunneled dialysis catheters?
Clin J Am Soc Nephrol 2009, 4(11): 1787-1790
23) Lin PH, Chen C, Bush RL, et al. Small-caliber heparin-coated ePTFE grafts reduce platelet deposition and neointimal hyperplasia in a baboon model.
J Vasc Surg 2004, 39(6): 1322-1328
24) Riesenfeld J, Ries D, Hetzer R. Analysis of the heparin coating of an EXCOR Ventricular Assist Device after 855 days in a patient.
Society for Biomaterials Transactions of the 32rd annual meeting 2007, (85)
25) Begovac PC, Thomson RC, Fisher JL, et al. Improvements in GORE-TEX Vascular Graft Performance by Carmeda BioActive Surface Heparin Immobilization.
Eur J Vasc Endovasc Surg 2003, 25(5): 432-437
26) Werkkala K, Jokkinen JJ, Soininen L, et al. Clinical durability of the CARMEDA BioActive Surface in EXCOR ventricular assist device pumps.
27) Hårdhammar PA, van Beusekom HM, Emanuelsson HU, et al. Reduction in thrombotic events with heparin-coated Palmaz-Schatz stents in normal porcine coronary arteries.
Circulation 1996, 93(3): 423-430
28) Kaufmann E, Hennig M, Loebe, et al. Improving the antithrombogenity of artificial surfaces through heparin coating - Clinical experience with the pneumatic extracorporeal Berlin Heart assist device.
Cardiovascular Engineering 1996, 1(1): 40-44
29) Samson RH, Morales R, Showalter DP, et al. Heparin-bonded expanded polytetrafluoroethylene femoropopliteal bypass grafts outperform expanded polytetrafluoroethylene grafts without heparin in a long-term comparison.
J Vasc Surg 2016, 64(3): 638-647
30) Lindholt JS, Gottschalksen B, Johannesen N, et al. The Scandinavian Propaten® trial - 1-year patency of PTFE vascular prostheses with heparin-bonded luminal surfaces compared to ordinary pure PTFE vascular prostheses - a randomised clinical controlled multi-centre trial.
Eur J Vasc Endovasc Surg 2011, 41(5): 668-673
31) Ashfaq A, Soroya MS, Iyengar A, Federman M, Reemtsen BL. Heparin-coated grafts reduce mortality in pediatric patients receiving systemic-to-pulmonary shunts.
Pediatr Cardiol 2018, Jan 13. Epub ahead of print
32) Gupta V, Aravamuthan BR, Baskerville S, et al. Reduction of subacute stent thrombosis (SAT) using heparin-coated stents in a large-scale, real world registry.
J Invasive Cardiol 2004, 16(6): 304-310
33) Gore S, Andersson J, Biran R, et al. Heparin surfaces: Impact of immobilization chemistry on hemocompatibility and protein adsorption.
J Biomed Mater Res B Appl Biomater 2014, 102(8): 1817-1824
34) Biran R, Pond D. Heparin coatings for improving blood compatibility of medical devices.
Adv Drug Deliv Rev 2017, Mar 112: 12-23